Aksjomaty liczb to warunki, jakie muszą spełniać pewne obiekty oraz działania na nich, aby mogły być uznane za liczby danego rodzaju (np. liczby naturalne, liczby wymierne itp.). Konstrukcje liczb są algebrami, tak utworzonymi, aby spełniały właściwe danym liczbom aksjomaty.

Odpowiedzi EKSPERTHerhor odpowiedział(a) o 13:44 Po prostu trzeba rozwiązać nierównościn^3-5n^2-5n+25 n^2(n-5) -5(n-5) (n-√5)(n+√5)(n-5)3 ---> n^3-5n^2-5n+22>0(no, tu trudniej znaleźć miejsca zerowe lewej strony, ale też trzeba rozłożyć na czynniki i posprawdzać znaki między miejscami zerowymi ) Uważasz, że ktoś się myli? lub

które wyrazy ciągu an są mniejsze od liczby m? an=n/4+1, m=10 Dla jakich wartości parametru m suma pierwiastków równania mx+2m+1=1/x jest większa od -1? 10.

Niech an oznacza dowolny ciąg liczbowy, symbolem Sn oznaczmy sumę n początkowych wyrazów tego ciągu, więc:S2=a1+a2S3=a1+a2+a3…..Sn=a1+a2+a3+a4+…+anPrzyjmujemy również ,że S1=a1 i S0=0Twierdzenie an jest ciągiem arytmetycznym, to suma n początkowych wyrazów tego ciągu wyraża się wzoremSn= dla dowolnej liczby naturalnej dodatniej sumę wszystkich liczb naturalnych te tworzą ciąg arytmetyczny o pierwszym wyrazie a1=100 i ostatnim wyrazie a900= więc:S900=Przykład ciągu arytmetycznym wiemy, że a1=4, r=3, Sn=650. Obliczymy że an= a1+ (n-1) ∙ r, otrzymujemy wzór na sumę:Sn=Z tego wzoru otrzymujemy równanie z niewiadomą n650=3n2+5n=1300(3n+65) ∙ (n-20)=0Stąd wybieramy tylko n>0 zatem n=20Liczba 650 to suma 20 początkowych wyrazów tego do zrobienia 1. Znajdź sumę: a) trzydziestu kolejnych liczb będących wielokrotnościami 9, z których najmniejszą liczbą jest 9 b) pięćdziesięciu kolejnych liczb będących wielokrotnościami 12, z których najmniejszą liczbą jest 24Odp. a) 4185 b) 15900 2. Oblicz sumę wszystkich liczb naturalnych: a) mniejszych od 200 i których reszta z dzielenia przez 3 jest równa 1 b) większych od 100 i mniejszych od 500, których reszta z dzielenia przez 5 jest równa 1 lub 4Odp. a) 6700 b) 48000 3. Miary kątów wielokąta o n bokach tworzą ciąg arytmetyczny, którego pierwszy wyraz równa się . Oblicz różnice tego ciągu, jeśli: n = 3 Odp. r = 4. Wykopanie pierwszego metra studni kosztuje 8 zł, a każdego następnego o 3 zł drożej. a) Ile kosztuje wykopanie studni o głębokości 25 m? b) Wykopanie studni kosztowało 798 zł. Jaka była jej głębokość?Odp. a) 1100 zł b) 21 m

Znajdź odpowiedź na Twoje pytanie o an=-n²+3n+4 - Zbadaj które wyrazy ciągu są mniejsze od 0 I proszę o dokładne napisanie co się robi. Kratos91 Kratos91 01.06.2009

Które wyrazy ciągu an są większe od liczby m?a) 10 - n^2 m= 0b) 2^n - 6 m= 10Które wyrazy ciągu an są równe 1?n^2 - 6n +15/ +3(-1)^ nJeśl ktoś by był tak miły i mi wytłumaczył jak się tego typu zadania robi będe bardzo wdzięczna :). xirrus09 1. masz obliczyc ktore wyrazy sa wieksze czyli mamy taka nierownosca) 10->010>16n>4n∈N₊n∈2^4Żeby sprawdzić wystarczy podstawić do wzoru. 2. a) n^2 - 6n +15/ -n +3=1 b)(-1)^n = 1jeżeli n jest liczbą parzystą More Questions From This User See All liczby należące do N,zatem wybieramy liczby naturalne:12,13,14,15, Wyrazy ciągu o numerach większych od 11 są ujemne. Wszystko jest trudne,nim stanie się proste. Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 45 .Pan Jan spłacał kredyt w wysokości \(12\ 000\) zł w sześciu ratach, z których każda kolejna była o \(500\) zł mniejsza od poprzedniej. Pierwsza rata była równa: A.\( 2750 \)zł B.\( 3000 \)zł C.\( 3250 \)zł D.\( 3500 \)zł CMiary kątów trójkąta są trzema kolejnymi wyrazami ciągu arytmetycznego. Najmniejszy kąt tego trójkąta ma miarę \(40^\circ \). Różnica ciągu arytmetycznego wynosi: A.\( 10^\circ \) B.\( 20^\circ \) C.\( 30^\circ \) D.\( 40^\circ \) BW ciągu arytmetycznym \((a_n)\) dane są: \(a_3=13\) i \(a_5=39\). Wtedy wyraz \(a_1\) jest równy A.\( 13 \) B.\( 0 \) C.\( -13 \) D.\( -26 \) CMiary kątów czworokąta tworzą ciąg arytmetyczny o różnicy \( 20^\circ \) . Najmniejszy kąt tego czworokąta ma miarę A.\(40^\circ \) B.\(50^\circ \) C.\(60^\circ \) D.\(70^\circ \) CLiczby \(x + 1, 2x + 2, 8\) są trzema kolejnymi wyrazami ciągu arytmetycznego. Oblicz \(x\).\(x=\frac{5}{3}\)Liczby \(x-1,\ 4,\ 8\) (w podanej kolejności) są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Wówczas liczba \(x\) jest równa A.\( 3 \) B.\( 1 \) C.\( -1 \) D.\( -7 \) BLiczby \(2, x-3, 8\) w podanej kolejności są pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego. Oblicz \(x\).\(x=7\)Wyrazami ciągu arytmetycznego \((a_n)\) są kolejne liczby naturalne, które przy dzieleniu przez \(5\) dają resztę \(2\). Ponadto \(a_3 = 12\). Oblicz \(a_{15}\).\(a_{15}=72\)Liczby \(x, 4, x+2\) są w podanej kolejności drugim, trzecim i czwartym wyrazem ciągu arytmetycznego. Wówczas liczba \(x\) jest równa A.\( 2 \) B.\( 3 \) C.\( 6 \) D.\( 1 \) BDany jest nieskończony rosnący ciąg arytmetyczny \((a_n)\) o wyrazach dodatnich. Wtedy A.\( a_4+a_7=a_{10} \) B.\( a_4+a_6=a_3+a_8 \) C.\( a_2+a_9=a_3+a_8 \) D.\( a_5+a_7=2a_8 \) CLiczby \(x, y, 19\) w podanej kolejności tworzą ciąg arytmetyczny, przy czym \(x+y=8\). Oblicz \(x\) i \(y\).\(x=-1\), \(y=9\)Ciąg \((a_n)\) określony dla \(n\ge 1\) jest arytmetyczny oraz \(a_3=10\) i \(a_4=14\). Pierwszy wyraz tego ciągu jest równy A.\( a_1=-2 \) B.\( a_1=2 \) C.\( a_1=6 \) D.\( a_1=12 \) BLiczby \(7, a, 49\) w podanej kolejności tworzą ciąg arytmetyczny. Wtedy \(a\) jest równe A.\( 14 \) B.\( 21 \) C.\( 28 \) D.\( 42 \) CTrzydziesty wyraz ciągu arytmetycznego \( (a_n) \) jest równy \(4\), a trzydziesty piąty wyraz tego ciągu jest równy \(7\). Wówczas różnica ciągu \( (a_n) \) jest równa A.\( 5 \) B.\( 3 \) C.\( \frac{5}{3} \) D.\( \frac{3}{5} \) DLiczby \(2, \log_{\frac{1}{2}}x, 8\) są (w podanej kolejności) wyrazami ciągu arytmetycznego. Wyznacz \( x \). \(x=\frac{1}{32}\)Miary kątów czworokąta tworzą ciąg arytmetyczny o różnicy \( 20^\circ \). Największy kąt tego czworokąta ma miarę: A.\(150^\circ \) B.\(135^\circ \) C.\(120^\circ \) D.\(60^\circ \) CDany jest ciąg arytmetyczny \( (a_n) \) określony dla \( n\ge 1 \), w którym \( a_5=22 \) oraz \( a_{10}=47 \). Oblicz pierwszy wyraz \( a_1 \) i różnicę \( r \) tego ciągu. \(a_1=2\), \(r=5\)Na ścianie kamienicy zaprojektowano mural utworzony z szeregu trójkątów równobocznych różnej wielkości. Najmniejszy trójkąt ma bok długości \( 1 \) m, a bok każdego z następnych trójkątów jest o \( 10 \) cm dłuższy niż bok poprzedzającego go trójkąta. Ostatni trójkąt ma bok długości \( 5{,}9 \) m. Ile trójkątów przedstawia mural? A.\( 49 \) B.\( 50 \) C.\( 59 \) D.\( 60 \) BLiczby \(1, 5, 501\) są odpowiednio pierwszym, drugim i ostatnim wyrazem skończonego ciągu arytmetycznego. Ile wyrazów ma ten ciąg? A.\( 499 \) B.\( 126 \) C.\( 125 \) D.\( 101 \) BDane są punkty \(A=(1,2)\) oraz \(B=(3,1)\). Punkt \(M=(p,q)\) jest środkiem odcinka \(AB\). Liczby \(p, 2q, x\) tworzą w podanej kolejności ciąg arytmetyczny. Wówczas: A.\( x=1 \) B.\( x=2 \) C.\( x=3 \) D.\( x=4 \) DCiąg \((a_n)\) jest geometryczny oraz \(a_1=2\), \(a_2=6\). Liczby \(a_3, x, \frac{x}{2}\) w podanej kolejności tworzą ciąg arytmetyczny. Oblicz \(x\).\(x=12\)W ciągu arytmetycznym \((a_n)\) określonym dla \(n\ge 1\) dane są \(a_1=-4\) i \(r=2\). Którym wyrazem tego ciągu jest liczba \(156\)? A.\( 81 \) B.\( 80 \) C.\( 76 \) D.\( 77 \) ADany jest skończony ciąg, w którym pierwszy wyraz jest równy \(444\), a ostatni jest równy \(653\). Każdy wyraz tego ciągu, począwszy od drugiego, jest o 11 większy od wyrazu bezpośrednio go poprzedzającego. Oblicz sumę wszystkich wyrazów tego ciągu.\(10970\)Wszystkie dwucyfrowe liczby naturalne podzielne przez \(7\) tworzą rosnący ciąg arytmetyczny. Dwunastym wyrazem tego ciągu jest liczba A.\( 77 \) B.\( 84 \) C.\( 91 \) D.\( 98 \) CCiąg \((a_n)\) jest określony dla \(n\ge 1\) wzorem: \(a_n=2n-1\). Suma jedenastu początkowych wyrazów tego ciągu jest równa A.\( 101 \) B.\( 121 \) C.\( 99 \) D.\( 81 \) BDany jest ciąg arytmetyczny \((a_n)\) dla \(n\ge 1\), w którym \(a_{10}=11\) oraz \(a_{100}=111\). Wtedy różnica \(r\) tego ciągu jest równa A.\( \frac{9}{10} \) B.\( -100 \) C.\( \frac{10}{9} \) D.\( 100 \) CDany jest rosnący ciąg arytmetyczny \((a_n)\), określony dla liczb naturalnych \(n\ge1\), o wyrazach dodatnich. Jeśli \(a_2+a_9=a_4+a_k\), to \(k\) jest równe A.\( 8 \) B.\( 7 \) C.\( 6 \) D.\( 5 \) Liczby: \(1, 3, x-11\) w podanej kolejności są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Liczba \(x\) jest równa A.\( 5 \) B.\( 9 \) C.\( 16 \) D.\( 20 \) CLiczby: \(2x, 15, 8\) w podanej kolejności są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Liczba \(x\) jest równa A.\( 1 \) B.\( 10 \) C.\( 11 \) D.\( 22 \) CLiczby: \(2x+1, 7, 13x-2\) w podanej kolejności są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Liczba \(x\) jest równa A.\( 1 \) B.\( 3 \) C.\( 4 \) D.\( 5 \) AMiędzy liczby \(4\) i \(22\) wstaw pięć liczb tak, aby wraz z danymi liczbami tworzyły ciąg liczby \(65\) i \(35\) wstaw dziewięć liczb tak, aby wraz z danymi liczbami tworzyły ciąg liczb trzeba wstawić między liczby \(16\) i \(250\), aby otrzymać ciąg arytmetyczny, którego suma wynosi \(1995\)?Suma czwartego i siódmego wyrazu ciągu arytmetycznego wynosi \(86\), a suma drugiego i trzynastego wyrazu tego ciągu jest równa \(22\). Znajdź pierwszy wyraz i różnicę tego dwóch pierwszych wyrazów ciągu arytmetycznego równa się \(27\), suma dwóch ostatnich wyrazów wynosi \(105\), a siódmy wyraz jest równy \(30\). Znajdź pierwszy wyraz i liczbę wyrazów tego szósty i ostatni wyraz ciągu arytmetycznego wynoszą odpowiednio \(2, 22, 222\). Znajdź pierwszy wyraz i liczbę wyrazów tego są dwa ciągi arytmetyczne: \(1, 4, 7,…\) oraz \(20, 21, 22,…\) Zsumowano \(n\) początkowych wyrazów pierwszego ciągu i \(n\) początkowych wyrazów drugiego ciągu. Okazało się, że otrzymano równe sumy. Wyznacz \(n\).Liczbę \(210\) podziel na siedem składników tak, aby tworzyły one malejący ciąg arytmetyczny i największy z nich był trzy razy większy od najmniejszego ciągu arytmetycznym piąty wyraz równa się \(25\), a iloraz otrzymany po podzieleniu wyrazu dwunastego przez trzeci jest o \(2\) większy od ilorazu otrzymanego po podzieleniu wyrazu szesnastego przez ósmy. Znajdź pierwszy wyraz i różnicę tego pan spłacił dług w wysokości \(5100\) zł w dwunastu ratach, z których każda była mniejsza od poprzedniej o \(50\) zł. Ile wynosiła pierwsza, a ile ostatnia rata?Miary kątów wewnętrznych wielokąta wypukłego tworzą ciąg arytmetyczny, którego różnica wynosi \(5^\circ\!\). Najmniejszy kąt ma miarę \(120^\circ\!\). Wyznacz liczbę boków wielokąta.\(9\)Szósty wyraz ciągu arytmetycznego jest równy zeru. Oblicz \(S_{11}\).\(S_{11}=0\)Udowodnij, że jeżeli trzy kolejne kąty czworokąta wpisanego w koło tworzą ciąg arytmetyczny, to co najmniej dwa kąty tego czworokąta są że jeżeli długości trzech kolejnych boków czworokąta opisanego na okręgu tworzą ciąg arytmetyczny, to przynajmniej dwa boki tego czworokąta mają taką samą pewnym ciągu arytmetycznym wiadomo, że ma dziesięć wyrazów. Suma jego wyrazów o numerach nieparzystych jest równa \(75\), a suma wyrazów o numerach parzystych jest równa \(90\). Wyznacz pierwszy wyraz tego ciągu.\(a_1=3\)Ciąg \((9, x, 19)\) jest arytmetyczny, a ciąg \((x, 42, y, z)\) jest geometryczny. Oblicz \(x\), \(y\) oraz \(z\).\(x=14\), \(y=126\), \(z=378\)Jednym z pierwiastków trójmianu kwadratowego \(y=ax^2+bx+c\) jest \(-\frac{1}{5}\). Liczby \(a\), \(b\), \(c\) tworzą ciąg arytmetyczny, a ich suma wynosi \(24\). Oblicz drugi pierwiastek tego trójmianu.\(x=-\frac{1}{3}\)
Otóż każdej liczbie naturalnej od 1 do iluś tam, przypisaliśmy konkretną osobę np. dla 1 mamy Mietka, a dla 6 Maryśkę. Ciągiem nazywamy funkcję, która jest określona dla kolejnych liczb całkowitych dodatnich . Jeśli są to wszystkie liczby całkowite dodatnie, wówczas ciąg taki nazywamy ciągiem nieskończonym .
CIĄG ARYTMETYCZNY - Liczby 52,47,42 są początkowymi wyrazami ciągu arytmetycznego (an ).a) Oblicz dziesiąty wyraz ciągu (an ).b) Podaj wzór na n -ty wyraz ciągu (an ).c) Oblicz sumę dziesięciu początkowych wyrazów ciągu (an ). czy ciąg o podanym wzorze ogólnym jest ciągiem arytmetycznym an=3n – Pierwszy wyraz ciągu arytmetycznego jest równy 12, a suma dwudziestu czterech początkowych wyrazów tego ciągu jest równa 1116. Wyznacz różnicę tego wyraz ciągu arytmetycznego jest równy 1, a dwunasty wyraz jest równy 17. Wyznacz pierwszy wyraz i różnicę tego Oblicz 103 + 99+ 95 + ... +516. Pan Sławek spłacił dług w wysokości 7500zł w dwunastu ratach, z których każda była mniejsza od poprzedniej o 50zł. Ile wynosiła pierwsza, a ile ostatnia rata? 57,53,49 są początkowymi wyrazami ciągu arytmetycznego (an ).a) Oblicz dwunasty wyraz ciągu (an ).b) Podaj wzór na n -ty wyraz ciągu (an ).c) Oblicz sumę dwunastu początkowych wyrazów ciągu (an ). czy ciąg o podanym wzorze ogólnym jest ciągiem arytmetycznym : an=2n – wyraz ciągu arytmetycznego jest równy -4, a suma szesnastu początkowych wyrazów tego ciągu jest równa 416. Wyznacz różnicę tego wyraz ciągu arytmetycznego jest równy 21, a drugi wyraz jest równy -3. Wyznacz pierwszy wyraz i różnicę tego Oblicz 51 + 55 + 59 + ... +1036. Pożyczkę w wysokości 17400 zł zaciągniętą w banku należy spłacić w 12 ratach, z których każda następna jest mniejsza od poprzedniej o 50 zł. Oblicz wysokość pierwszej i ostatniej raty.
Zestaw użytkownikanr 9209_2027. Zestaw użytkownika. nr 9209_2027. Zadanie 1. Dany jest ciąg o wyrazie ogólnym . Uzasadnij, że wszystkie wyrazy ciągu są liczbami naturalnymi. Który wyraz jest równy 5? Różnica sześcianów dwóch kolejnych wyrazów ciągu wynosi (-1261).
Agata16 Użytkownik Posty: 62 Rejestracja: 30 maja 2009, o 15:00 Płeć: Kobieta Podziękował: 40 razy Które wyrazy ciągu an są większe od podanej liczby x? Które wyrazy ciągu an są większe od podanej liczby x? \(\displaystyle{ an=(n-3)^2}\) \(\displaystyle{ x=5}\) anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Które wyrazy ciągu an są większe od podanej liczby x? Post autor: anna_ » 22 paź 2009, o 19:29 Rozwiąż nierówność \(\displaystyle{ (n-3)^2>5}\)
aZcg.
  • xjlinc5g7j.pages.dev/79
  • xjlinc5g7j.pages.dev/120
  • xjlinc5g7j.pages.dev/115
  • xjlinc5g7j.pages.dev/329
  • xjlinc5g7j.pages.dev/33
  • xjlinc5g7j.pages.dev/282
  • xjlinc5g7j.pages.dev/245
  • xjlinc5g7j.pages.dev/244
  • xjlinc5g7j.pages.dev/391
  • które wyrazy ciągu an są mniejsze od liczby m